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AbrlrneL We investigate optimal conditions far the storage of invanant sets of patterns 
in neural network memories. The sets of patterns that we consider are highly correlated, 
non-random and invariant with respect to some symmetry transformations. We generalize 
Gardner’s method to study the fractional volume in t h e  space of neural interactions that 
allow for storage of invariant patterns. We demonstrate that optimal storage conditions 
correspond to non-trivial relations between the number of storcd pattcms. their stability. 
and other, symmetry-specific characteristics of patterns. 

1. Introduction 

Recent progress in the theory of attractor neural networks [ 1,2] has became possible 
due to an extensive use of statistical physics methods (see 131 for an extensive pre- 
sentation of the theory over the last five years). In the recent years a lot of effort has 
been devoted to applications of such methods to the theoly of learning (for a review 
see [4]), i.e. the determination of interactions for which network dynamia leads to 
desired attractors. Such works have been initiated by Gardncr [5] who derived the 
optimal conditions for which storage of a set of random patterns is possible. We apply 
Gardner’S program in the present paper to the problem learning sets of patterns that 
are invariant with respect to a group of symmetry transformations. 

The standard models of attractor ncural networks consist of a set of A’ binary 
neurons. We denote the neurons states by cri = *l. Neural dynamics in the absence 
of noise takes the form of the  deterministic updating rule, 

where Jij denotes the synaptic connection matrix. A set of p spccificd pattcms, E f ,  
where p = 1,. . . , p ,  and j = 1,. . . , A’ is said to he storcd in the mcmory described 
by the d j n a ~ i a  (1) if ( ace !he rta:ionary states af this dynamics. The n%tFi J .  
for which e are fixed points of the dynamics should satisfy lor cach j d  and i the 
inequalities 

‘I 
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provided the connection matrix is, for each i ,  normalized according to 

J,; = N 
j # i  

(3) 

The states < are stable even for n = 0. Larger values of the stability paramcter K 
ensure larger stability domains of the patterns. 

The probability that solution of the inequalities (2) exists is, according to Gardner 
[SI, given by the fractional volume in the interaction space of the matrices Jij, 

Gardner’s approach allows to determine in the statistical sense whether or not 
the solutions of the inequalities (2) exist. The existence of such solutions may then 
serve as a necessary condition for convergence of various learning algorithms [5%3]. 

The original idea of Gardner has been developed in various directions recently 
(for a review see A ) .  The existencc of optimal solutions of inequalities (2), that is, 
those that contain the smallest possible amount of errors, can he formulated as a 
problem of canonical ensemble calculation [lo]. Different restrictions of the matrices 
Jij have been considered. Gardncr’s program has in particular hecn applied to 
matrices with Jij = +l [lo-121, and to matrices characterized by a definite ratio of 
symmetric and asymmetric parts [ 131. All these generalization of Gardncr’s approach 
may also be studied in the context of the problcm considered in the prcscnt papcr. 

One of the basic questions in the theory of learning concerns learning of structurcd 
sets of data. Correlated biased patterns have already been invcstigatcd by Gardner 
[5] and have been shown to allow better information capacity of the network. Specific 
learning rules have been derived for hierarchically organized data [14, IS]. Lcarning 
algorithms for strongly correlated sets of patterns have been proposed by several 
authors [4]. Some of these algorithms assure optimal stability (maximal values of the 
K parameter at the given capacity, cf works by Krauth and Mezard [6], Schmitz er nl 
[SI). The problem of learning of structured patterns within a given context has been 
addressed recently [16,17]. 

Among the problems of storing and retrieval of structured sets of data onc of 
the most important is that ofperceplunl invarinnce, i.e. the ability of cognitive systems 
to recognize transformed versions of remembered patterns. Among possible trans- 
formations there are translations, rotations, scale transformations, etc. The problem 
of perceptual invariance is central for cognitive psychology and has been widely dis- 
cussed for multi-layered feed-forward nctworks (see for instance [IS]). In  the context 
of attractor neural network this problem has hecn addressed by von der Malsburg 
and Bienenstock [19,20], and Kree and Zippclius [21]. Thcse authors considered net- 
works that recognize topological reaturcs of images. All homeomorphically invariant 
images are recognized in such nctworks as prototype graphs. 

Our aim in the  present paper is to study oprinial srorage of iniwrionr scrs of darn 
in attractor neural networks in the other scnsc. We shall demand that elenrenrs of 
a given set of parrerns iniwrinnr wirh respccl 10 sonic group of rrnnsforninrions are fued 
poinrs of rhe nelwork dynantics (I). All invariant images are recognized as such in our 
models. Such a property may turn out to be useful in several prohlcms of pattern 
recognition. 
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The plan of the paper is the following. In section 2 we formulate the problem 
and define invariant sets of patterns. We consider sets of highly correlatcd, non- 
random states. Section 3 contains a detailed description of an alternative approach 
to the evaluation of fractional volume (4) for the invariant sets of patterm. Analytic 
evaluation of the storage capacity for such sets is discussed in section 4. We derive 
variationally exact boundaries of the region in the control parameter space in which 
solutions of equation (2) exist. The rcsults are presented and discussed in section 5. 
We demonstrate that optimal storagc conditions correspond to non-trivial relations 
between the number of stored patterm, their stability, and othcr, symmetry-specific 
characteristics of patterns. Three appendices a t  the end of the paper contain technical 
details of the calculations. 

i. invariani seis ai  paiierns 

In most of the neural networks models one considers random patterns, i.e. patterns 
that at least to some extend are constructed according to stochastic rules [3]. This 
fact implies the necessity of use oi sophisticated methods of the theory of disordered 
systems, such as replica trick. In this paper we consider non-randontpatterns, however, 
since we want to extract possible effccts of group invariancc. For this reason the use 
of replica trick is not needed. 

One possible implementation of our idea is to rcprescnt the pattens in d- 
dimensional lattices and to consider patterns invariant with respect to translations. 
The simplest example of such s e s  of patterm corresponds to d = 1. 

We consider a set of N neurons located for simplicity on a one-dimcnsional torus 

effects but is by no means necessary for our approach. As one of the pattcrns f p ,  

the one with p = 1, we take 

rather thrn 2 enenime8slesa! !ice. %:,s tepc!cgy a!!w ersic: ::catmect cI  b G u K h r y  

for 1 S i 6 d ,  and = -1 otherwise. Such a state represents a onedimensional 
‘pixel’ of d active ( f  = I), neurons surroundcd by a ‘sea’ of inactive neurons (( = 
-1). We consider now all thc translated vcrsions of the pattern f ’ ,  where the 
smallest possible translation is by o neurons. Evidently 1 4 U < N .  The pattcm f 2 ,  

for instance, is given by 

f ?  = +I (6)  

for 1 + Q < i < d + a, and <? = -1 otherwise, etc. 
For the torus topology translations are the same as rotations, so that  we choose 

a to divide N .  The number of different patterm in the set of all ‘translated’ vcrsiom 
of f ’  is therefore p = n N  = N/a ,  and is a natural numbert. We denote this set 
of patterns by S. We ask in the prcsent paper whether it is possihle to store this set 
of patterns in the neurai IIctwofk memory oi the Hopiicid-type. We aiso investigate 
optimal storage conditions like, Tor instance, the conditions for maximal stability of 
stored patterns at the given capacity of the network etc. 

t ?he discrcle symmctly p u p  in qucstion is iromorpliic IO 2,. i .c group 01 natural numbers wit11 
addition modulo p. 
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Obviously the presented construction of non-random patterns may easily be gen- 
eralized to multiple dimensions and to multidimensional symmetry groups, such as 
two-dimensional translations on a plane. ’Ibrus topology, as we mentioned does not 
have to be used, when the effects of plane boundaries are taken into account. Invari- 
ance with respect to a whole group of isomctries (translations, rotations, rcflectiom) 
may be considered. 

Another important generalization is to consider the basic states of arhitrary form, 
instead of ‘pixel’ shapedescrihed by equation (5). One can also include an element 
of randomness, and consider patterns that have ‘fuzzy’ shape. 

For any case the sets of data that we consider are highly correlated. When storing 
them one usually encounters the appearance of stable spurious memories. Instead of 
having elementary ‘pixel’ states as the only stationary states, one encounters two-‘pixel’ 
states, three-‘pixel’ states, and so forth. We do not study this prohlem in the present 
paper for two reasons. First of all, the spurious states that we described may in fact 
he useful for some applications and their existence may even he desired. Secondly, 
the question that we ask is how to store optimally the set of patterns S in the 
memory, independently of the appearance of spurious states. The questions of typical 
performance of the memory in optimal conditions in general and of the stability of 
spurious states in particular belong, on the other hand, to a different category. They 
may be answered by studying applications of particular learning algorithms (such as 
various versions of the minimal overlap algorithm [6,S]) in order to store the set S. 
We leave the discussion of those prohlems to a separate paper. Here we concentrate 
on the interplay between the group invariance and optimal storage properties in the 
frame of Gardner’s program. 

3. Fractional volume in the space of interactions 

The calculation of the fractional volume in the space of interactions (4) for the set 
of non-random patterns invariant with respect to one4imensional translations and 
defined as is section 2, equations (5), (6), docs not requirc the use of the replica 
trick. It does require, however, some modifications to the  original approach of 
Gardner that we descihe helow. 

The fractional volume V,. may he writtcn as 

N 

where each of the partial fractional volumes Vi  is delined as 

After rcprescnting the Dirac 6 function in the form of a Fourier integral, the inte- 
gral over J i j  becomes Gaussian and can he performed analytically. The remaining 
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integration over the Fourier variable can be evaluated in the N -+ c4 limit using the 
saddle point technique, 

27ri 

C denotes in the above expression integration contour for s going from -im to 
+im.  C is a constant that for large N behaves as InC/N - 0. The asymptotic 
behaviour of the integral (10) is governed by the value of the integrand at the saddle 
point s = +. 

Similar techniques can be used to evaluate the numerator of the expression (8), 
which we denote as a;. We represent the Dirac 6 and 0 functions as Fourier integrals 
[SI and use the following representation 

Gaussian integrations over J i j ,  and then over tu can bc performed explicitly. We 
obtain then the following expression 

where ( M ; ) ; ; ,  are the matrix elements of the inverse matrix of the overlap matrix 
Mi. The elements of the overlap matrix are, in turn, given by 

Note thc overlap matrix M i  is 6-depcndent. It has the dimension p = O N ,  and, as 
we shall discuss later, is positivcly dcfined for the considered invariant sets of data 
(see appendix A)t. For this reason we may consider the contour C to lie to thc right 
of the imaginary axis (Res  0). In particular we may considcr positive real values 
of s as candidates for saddle points. 

t I1 is wonh stressing Ihal even for random. slalislically indcpendenl pallcrns the malrix M can he shown 
IO be non-negative [22]. 
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Let us introduce the function 

where we used the shortened notation for the multiple integral over A,. We also 
define 

(15) 
1 - 0  1 

N I n s  4- - I n  f ( s , a , n ) .  g ( S , a , K ) = S - -  
2 

Using the above introduced notation we may write down 

The integral over s may now he evaluated using the saddle point method. We show 
helow that for some values of the parameters a, K the saddle point corresponds to 
real S .  

In the limit of s - 0 we introduce new integration variables y,, = AA,,, so that 
r r 

From (17) we easily obtain the asymptotic bchaviour of f for s - 0, 
a N  

I n f ( s , a , t c )  = ----lns+constant,.  
2 (18) 

The above result implies that for. s - 0 

g ( s , a , t i )  - C O .  (19) 

Direct inspection of the definition of f suggests on the other hand that for s - 00 

(20) - e - N A ( a . r ) s  f ( s , a , n )  

where A( 0, K )  is an intensive function of the control parameters o, K and others if 
there are any. This function is given by 

From the expression (20) we obtain asymptotic hehaviour of the function g for s - CO, 

g ( s , u ,  K )  - .( 1 - A(u. x)) - B ( n .  t i )  I n  s + . , .  (22)  

where B( ., .) is another intensive function of control parameters. Evidently, y tends 
to CO provided A(a,K) < 1. In  such a case the function g ( s , a , r i )  has a minimum 
for some s in the intenal (0 ,00) .  This value of s is a saddle point value for the 
contour integral (16). Obviously, the value of s at the saddle point tends to infinity 
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as A ( ~ , K )  approaches 1. At the same time the value of g tends logarithmically to 
-m. Fractional volume shrinks to zero when 

A ( ~ , K )  = 1 (23) 

or, in another form, 

From (24) one obtains the analogues of Gardner's critical curve a,( K )  that determines 
the boundary of the phase in the control parameters' space in which solutions Of 
inequalities (2) exist. 

There are specific aspects of our method of calculation of the volume in the 
interaction space that require more discussion. First of all, note that until now we 
have not attempted to discuss the possible randomness of the patterns .$. In another 
words, we have not calculated the average over such randomness. There arc basically 
two ways of treating random patterns within our method. 

The first way consists in calculating the average over <# in (15). This requires 
averaging of the logarithm of f (  s , a , ~ ) ,  and may be performed using thc standard 
replica method. As a result one easily recovers the original Gardner result. Our 
method works well in such a case, hut is nothing more but a modification of the 
standard approach, as is for instance the cavity approach of Mezard [23]. 

The second way of averaging the  logarithm of the fractional volume consist in 
the direct use of expression (24). This is, however, a very difficult task, since for 
typical random realizations of the matrix M i  the configuration A,, that minimizes the 
quadratic form on the LHS of (24) itseif depends on (1 and is very hard to find. 
Nevertheless, one may try to find it for each realization of the quenched variables 
using variational methods. For a given ct and a given rcali7ation of <", one may then 
find a value of K that fulfils (24). hut is still <U dcpcndent. Finally, repeating such a 
procedure for different realizations of C L ' ,  one may calculate the avcragc and rccover 
the Gardner result. In this case our method is much more complicatcd than the 

It relates, namely, the problem of catculation of the fractional volume to properties 
of the random matrix M'. This relation, in turn, allows us to apply random matrix 
theory 1241 to evaluate the critical curve. 

In particular, by looking at the avcragcd dcnsity of the eigenvalues of thc matrix 
M i ,  one can show that typical realizations of M i  have spectra that are bounded from 
above and from below. This fact us allows immediatcly to derive upper and lower 
hounds on Gardner's critical curve 1221. Such bounds are quite precisc for not too 
small values of K ,  Moreover, such hounds may be quite easily derived for various 
distributions of (1' and various nctwork architectures. In  [22] wc have derivcd such 
hounds for biased patterns, as well as for randomly distorted versions of the 'pixel' 
patterns that  are discussed in the prcscnt papcr. Such applications of our method 
a!!gA, to dctcrl+ine c:itica! CGTJl'eS 
The advantage of our approach, however, is that we are ahlc to calculate precise 
estimates of critical curves for a much more general class of random patterns that is 
accessihle to the replica or the cavity method. 

Finally, our method may hc directly used for non-random patterm, since in such 
a case no averaging over the quenched disorder is needed. In the present paper, 

repjica o r  [he me['nod, but gives some new insight into the prt-,'i:cm disi.iJucd. 

appr"xima!e!y pwithiR faC ebyPifled boand>, 
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in fact, we apply this method to non-random 'pixel' patterns (see the next section). 
Similarly, we may apply the method to any other highly 'structured' and organized 
set of data. The investigations of optimal storage conditions and critical curves in 
such cases allow us to isolate and study the interplay between the structure of the set 
of pattcms and properties of the memory. Such problems cannot be easily resolved 
with the help of the standard methods. 

4. Calculation of critical storage conditions 

In order to derive explicit form of the critical condition (24) we have to specify the 
overlap matrix M. We consider here the particular example of the set of invariant 
patterns - the set of 'pixel' patterns introduced in section 2. For this case the matrix 
M defined as 

has the following form 

The matrix M has the form generic for sets of data invariant with rcspect to some 
group of geometrical transformations. First two rows of (26) describe a 'short range' 
part that is non-zero for neighbouring p and id  only. Note that for the case of sets 
of patterns that have a compact shape and are invariant with respect to translations 
or rotations, the concept of neighbouring ,I and p' can always be defined precisely. 
The short-range part of M consists in the presently considered case of r terms, where 
T = [ d / a ] , ,  while the function [ . I .  is defined as follows: for any real, noninteger 
z, [z]. is the integer part of 1'. For integer 2, [a-] .  = z - 1. I f  we take any of the 
'pixel' patterns and start to translate it in one direction (say to the left), exactly 7- 

of the translated 'pixel' configurations will partially cover the starting conliguration. 
Each of the neurons is active (E:  = 1) for 7~ or r + 1 patterns. 

The remaining part of the matrix M is a 'long-range' part. This part (last row 
of (26)) has the form of the sum of several (in the present case two) projection 
operators and does not have any trace of the metric structure. The generic form of 
the matrix M allows us to find its eigenvectors, eigenvalues and its inverse analytically 
for a broad class of invariant sets of data using Fourier transform techniques. 

In order to get an insight into the critical condition (24) we have to achieve the 
two tasks. 
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(i) We have to evaluate thc action of the inverse of thc matrix M o n  the Vector 

(ii) We have to find the minimum of the  function XM-IX. 

The first task is done  by solving the  linear equation 

x = ( A , , .  . . , A e N ) .  

with respect to x,,. This is done  easily after introduction of two unitary transforma- 
tions. 

multiplication by ( f  

x,, = <?A, 

z = (!'x w t w  

discrete Fourier transform 

with the Fourier frequencies given by 

f o r k = O ,  . . . ,  a N - 1 .  
Elementary calculation then yields 

where 

8(& ?'U) 
cos  ( 7. 'Wk) (33) 

?'=I 

4d a N 6 , , o t k  
N 

while <,(k) is the Fourier transform of <f". Thc  matrix M aftcr pcrforming the 
transformations (28) - (31) becomes a sum of a diagonal matrix and a projection 
operator. Thc  solution of (32) can he casily found and rcads 

In the above formula f(k) must he differcnt from 0. As wc discuss in appcndix 
A, f( 12) is typically greater than zero, except for even N, wk = R ,  even I' and for 
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d = f a .  Fortunately, for this particular case IEi(k)l? vanishes as well. The detailed 
discussion of this apparent singularity is contained in appendix B. 

Using the solution (34) we may now turn to the second task - evaluation of the 
minimum over A,, > K of the function 

AM- 'X  = x A * ( k ) z ( k )  
I; 

We shall construct this minimum using the variational approach. It is obvious that 
the minimum is obtained on the boundary of the set S, of A, > K .  A natural 
candidate for the minimum is therefore the 'edge' point A:r = (n, . . . , K ) .  Note 
that A:,(k) = ~ & ( k ) .  Inserting the probe vector A:r into (24) we obtain after some 
algebra the approximate formula for the critical storage condition. Firstly, denoting 

A;r(k')<i(k') o N - I  

= - c f(k,) 
nN k'=1 

we immediately obtain from (24) the expression 

so that finally 

(35) 

In the above formula we have introduced the parameter 6, which is equal 0 or 1 
depending on whether the ith neuron belongs to, i.e. is active (E !  = 1) in exactly 
T or f + I 'pixel' patterns, respectively. We have also neglected in (37) the term 
corresponding to k = 0 that enters the definition of d. For k = 0, #'(0)12 as 
well as f (0 )  are both intensive, so that the ratio I<! ' (o)12/Nf (o)  that enters (35) is 
negligible for N - 00. Direct inspection of (33) indicates, on the other hand, that 
N f ( k )  is an intensive quantity for k > 0 and has a well defined limit for A' - m. 
That fact indicates also that the series on the R ~ I S  of (37) has also a well defined 
limit and becomes the integral 

where 
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Unfortunately, it turns out that the ‘edge’ point does not  always co r re spnd  to the 
minimum of the expression (24). The inequality (38). nevertheless, describes the exact 
critical curve quite well. 

In order to see that X i r  does not correspond to the minimum of the quadratic 
form XM-’X over X E S,, we easily observe that the necessary and sulficient condi- 
tion for this is: 

for all p. Direct calculation of z , ~  (see appendix C) shows that it is true only for d < a 
(i.e. for T = 0) and  it is not the  case in general. With increasing d some components 
of the vector s,, become more negative. The  negative components, however, decrease 
exponentially when j L  varies, and one  can expect that their ‘effective’ number remains, 
in a sense, finite. For instance, for the  case T = 1 and 6; = 0, the negative 
components appear for p = ji( i) f 3,  +4, etc, where j i (  i )  denotes the single value 
of p for which (r = -1. A better approximation for the minimum of the expression 
(24) is obtained for 

then for 

etc. The values of in the case (41), and XpL(i)i2,*4 in the. case (42) have 
to be dctcrmined using standard differential calculus (for the detailed discussion see 
appendix C). In this way for every value of d we are  ahle to construct a systematic 
approximation to the  minimum of the quadratic form (24) using elementary methais.  

The detailed numerical analysis of the above result is presented in the next section. 

5. Discussion of the results 

We start this section with the  detailed discussion of the approximate result (37) and 
(38) that corresponds to the simplest variational prohe function that describes the 
minimum of the form (24). 

The critical storage conditions (37), (38) define the boundary of the region of 
parameters a = l/a, d and h: for which there exists at least one  solution J i j  in 
the  space of interactions that fulfil the condition (2) for a given i .  Since in general 
there is always an extensive number of neurons that are covered by 7 - +  1 ‘pixels’ and 
correspond t o  6, = 1, as well as  those that are covercd by T ‘pixels’ and correspond 
t o  6;  = 0, the inequalities (37) and (38) must be fulfillcd for every i ,  i.e. for both 
values 6,  = 0, 1. 

We remember once more that 11 and a are  natural numhcrs, and that a must 
divide N .  d is the width of the ‘pixel’ (the numhcr of is such that E r  = 1) and must 
be  smaller than N .  Since the theory is invariant with rcspcct to the simultaneous flip 
of all neurons, the results must be  invariant with respcct to the  exchange d - h‘ - d. 
We shall consider in thc following only the case of d <( N which is interesting from 
the  point of view of pattem recognition theory and for which the limit N - m was 
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1.02 

i .on 

0.98 

0 9G 

k 
0.94 

0 92 

0.90 

0.88 
I 

a- 0.5  

10 

Figure 1. The maximal slahility parameter 6 as a function of 'pixcl' s i x  d for the 
network capacity ck = 0 .5 :  N = 5000. 

2.50 +-J ' " 1 ' " ' " -U ' " ' I " ' ' " ' - ILt- 

10.00 20.00 30.00 k b  bo 
d 

0.00 L7,, , , I , ,  ' I  ' , ' I  ~ ''17---m, - 
0.00 

Figure 2. Same as figure 1. hut for n = 0 . 2  

considered. We present results of (37) for N = 5000 which corresponds already to 
the asymptotic limit of (38). For larger values of iV results are the samc. 

In figures 1.2 and 3 we present the curves that correspond to the maximal stability 
parameter K as a function of d for a given value or a, For large values of c) (sec for 

r , ~  - 1  iii~taiice figure 1 foi CY = O.6j, dose io iiie iippei capaiiiy liiiiii mmax = 1 ,  r i m i n  = I ,  
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iy.00 ?-- 1 '  " ' " " " " ' " " " ' " " " 
.I 

i,' 
2.00 4. 

0.00 - i _r 

0.00 

U,=(?. 02 

L 

- F 300.00 400.00 
ioo.00 200.00 

d 
Figure 3. Same as figure 2, hut lor a = 0.02 

the maximal values of ti behave more or less regularly. timax grows from practically 
zero, and saturates at some value for larger d. Note, however, that the approach 
to the asymptotic limit is oscillatory. The oscillations are relatively weak and have 
period 2. One may expect that even weak randomness will tend to smooth out these 
effect 1221. The oscillatory structure is visible much better for smaller a = 0 . 2  in 
figure 2; oscillations are here relatively larger and have the  period a = 5. After 
somewhat irregular behaviour for small d the curve aproaches regular oscillatory 
phase that does not seem to be damped. Still onc may argue that even weak disorder 
(such as for instance fluctuations of d )  will dcstroy the observed structure. 

This structure is fully developed for small values of a = 0 . 0 2 ,  as prcsentcd in 
figure 3. Again, after initial growth, timRx depends periodically on d.  Oscillations are 
large (50% of amplitude) and have the period equal to a = l / a  = 50. They seem 
to be stable with respect to pattcrn randomness 1221. Thc two parts of the 'gothic 
ares' come from the two different conditions (37) for Si = 0 (left 'arc') and 6, = 1 
(right 'arc'), respectively. The maxima at the values of d which are multiples of a are 
the result of the fact that at this point there are no neurom with 6, = 0. This points 
are derived from the condition (37) for 6; = 1 which has a jump when going from 
d = ku to d = ka + 1. 

Neglecting the maxima in d = ku, the interpretation of the curve in figure 3 
is the following. There are optimal values of the size parameter d that allow for 
higher stability of the stored patterns at the Same level of capacity a. High stability 
is obtained when the distance d s  between the two 'pixels' that are separate, i.e. do 
not have any common active neurons, is maximal. This condition is obtained for 
d, E a / 2 ,  i.e. for d = ka + a / 2 .  On the other hand, maximal stability is much lower 
for when d,  is small, i.e. for d = ka. One should stress that the above statement, 
which is the central result of our paper, is very general and turns out to be valid 
for higher dimensions for different symmetry groups, as well as in the presence of 
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disorder [22]. 
The periodicity of the optimal stahility curves in figures 2 and 3 is an interesting 

effect itself. It means that when we construct hasic 'pixel' states using various numhers 
of the blocks of the size n plus one Mock of the size d' ,  so that d = m a  + d' ,  the 
resulting optimal stability is nz independent. 

0.00 , , ~, , , , 1 , ,  , , , , , , , , , , , , , I , ,  , , , , , , ~, 1 
0.00 0 10 0.20 0.30 0.40 0.50 

a 

Figure 4. The maximal stability parameter I( as a funclion of network capacity OT for 
d = 100; N = 5000. 

The different look at our results is presented in figures 4 and 5 that present K,,,,, 

as a function of a at the given value of d. These figures are direct analogues of 
Gardner's curve OLJ K )  [SI. Here, however, the discreteness of our model plays an 
essential role. The values of a correspond to divisors of N = 5000. For d = 100 
which is a multiple of a = l / n  for most of the larger values of OL presented in 
figure 4, the curve has a regular shape - it decreases with increasing a. For d < a 
the curve enters another regime, fully described by the expression (37) with I' = 0. 
The situation is much more complicated for d = 09. Although the hehaviour for 
a = l / a  < d is analogous, the curve exhibits irregular oscillations for smaller values 
of CY. The points of the curve lie either close to minima or to maxima of the curves 
represented in figures 1-3, depending on the value d modulo a .  

The major question now is how reliable are the above results. We remind the 
reader that they are exact only for d < a and otherwise they arc based on an 
approxintate variational niethod of finding the minimum of the quadratic form (24). 
lb answer this question we construct the exact minimum using the method sketched 
at the end of the previous section and presented in detail in the appendix C. Figure 
6 represents the essential features of the exact solution. We limit ourselves here to 
d < 2n, and a = 0.02. The analysis descrihcd in the appendix C shows that the 
point 

(43) xp, n -  - ( K ,  . . . , K )  
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d=99  

Figure 5. Samc as figure 4. hut lor d = 99 

m-0.02 

Figure 6. The ma.imnl aahility parametcr I as a function ol'pixel' size d lor the nctworl; 
capacily n = 0.02;  N = 5000. Only the region d Q 2 0  is shown. Squarcs corrcrpnd 
to the rcsulls o l  figure 3 nnd dcrcrihe mac1 results lor d < n and apprmimatc result 
for n < d Q 20.  Stars dcnolc the 'emcl' result. 

does not give the exact minimum of (24) (thc corresponding critical condition is 
represented by squares in figure 6) .  A hetter approximation for the exact minimum 
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is obtained for 

Note that this is an analogue of (41) for the case bi = 1. The indices i ~ ( i )  and 
p ( i )  + 1 correspond to E P ( i )  = E,,ci,+, = -1. Although the results for (44) (stars in 
figure 6) differ quantitatively from thase ohtained for (43). their qualitative character 
remains the same. As we expect the difference grows with d (sec appendix C). We 
have also tried another probe vector 

In principle, more and more components of X should become rigorously larger than 
K and should be determined usingdiffercntial calculus whcn d approaches 30. Amaz- 
ingly, however, the results obtained for (45) do not differ at all from those ohtaincd 
for (44). Although we could not prove it, this suggests strongly that the results 
ohtained with (44) are exact. 

I n  the next ‘gothic arc’ (2a < d < 3a) the situation is analogous and most 
probably a finite number of components of A, > K sulficcs to estimate the minimum 
very precisely. 

We conclude from this analysis that: 

(i) simple probe vectors, such as A& or Ai,., give for smaller values of d the exact 
description of the critical curve; the same vectors give a very good approximate 
description of the critical curve for all values of d. 

(ii) The main difference between the exact results and those ohtained for Xi,. = 
( 6,. . . , n) consists in smoothing and damping of the  ‘gothic arc’ oscillations in 
figures 2 and 3. 

Nevertheless, the oscillations observed for approximate solution (figures 2 and 3) 
survive for the exact solution at least to some extent Therefore our main conclusion 
concerning non-trivial optimal conditions for higher stability of patterns remains valid 
in gcneral. 

In the conclusion we would like to stress that we have prescntcd hcre an example 
of the application of Gardner’s program to the problem of storage of invariant data. 
The theory presented may be easily generalized to various othcr cases and the results 
have generic character, They indicate that  at the given capacity lcvcl of the memory 
there are usually optimal stability conditions for  storage of invariant sets of pattcrns. 
Such conditions are typically rclated to the sbc of the stored patterns and to thc 
difference between close, but separate patterns. 
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Appendix A 

In this appendix we discuss in detail properties of the matrix A4;,p,. The diagonal 
part of this matrix in the basis ohtained after applying two unitary transfomations 
(equations (29) and (31)) is related to the function f(k). For odd N all the values 
of f(k), apart from k = 0, are douhly dcgcncrated for wk = 2rr - wk. When N 
is even, additional non-dcgenarate value of f( k) appears, since k may be equal to 
a N / 2 ,  i.e. wk = T. It  is easy to check then that for ( r +  1)a 2 d 2 ra 

(46) 
4 
IV 

f ( a N / ? )  = - ( d -  r a ) ,  

for even r ,  and 

(47) 
4 

f ( a N / 2 )  = ; i ; [ ( r+  1)n - d]  

for odd r. Evidently for it = ro and evcn r, f ( a N l 2 )  = 0. For the particular case 
when d is a multiple of a ,  all neurons correspond to 6, = 1 .  Thcrcfore, it is casy to 
check that for each i, &(aN/2) = 0. The vcctor z(k) = is the eigenvector 
of the matrix M with the non-dcgcncrate eigenvalue zero. In the original hasis it is 
real and has the form z,, = <:(-1)’. That mcans that the integral over T,’ in (11) 
cannot be performed. The discussion how to deal with this complication is contained 
in appendix B. Hcre we stress only that apart from this singular case f(k) is strictly 
positive for all k and all values of the parameters d and a. It is elementary to prove 
this fact for low values of v ,  and we carefully chcckcd it using numcrical mcthods for 
all othcr cases considered . 

The eigenvales of the matrix M may he found easily from the equation 

(48) 
1 
N X Z ( k )  = f ( k ) r ( k )  - - & ( k ) X ( : ( k ’ ) z ( k ’ )  

!d 

The ahove eigenequation has following solutions. 

For all 12 such that &(k) = 0, the eigenvalues are 

x = f ( k )  > 0 (49) 

while the eigenvector 

z(k’) = 6 k , , k .  (50) 

Note that this eigenvaluc is douhly degcncratc. There arc two real eigenvectors 
that correspond to thc vector (SO), namely 

<f‘cos(wr.,l) 

m .z,, a 

and 
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For all k such that c i (  k )  # 0 somc cigcnvalucs can hc dctermincd from thc 
equation 

The sum c' is restricted to the set S' of k ,  i.e. k = 0 and N* values of k # 0 
such that < , ( k )  # 0. There are exactly N' non-degenerate solutions of the (51) 
located hctwecn the different values of f(k). The largcst solution lies above 
f ( 0 )  = O ( N )  and is non-degcnaratc. It is important that all eigenvalues fulfil 

X > inin f ( k )  > 0. (52) b € S .  

The corresponding eigenvectors are given by 

< , ( k ' )  x( k')  = x - f (  k')  (53) 

and correspond to real z,,, since f ( k )  = f (aN  - k )  and F i ( k )  = < ; ( U N  - k ) .  

Finally, for each of thc  k such that E i ( k )  # 0 nad k # 0 therc exists one 
eigenvector of the form 

x(k') = ( i ( k ) 6 k , , k  - < i ( a N  - k ) 6 k , , - ~ - ~  

C ( : ( k ' ) z ( k ' )  = 0. ( 5 5 )  

(54) 

so that 

k' 

There are exactly N' such eigenvectors and they correspond to the eigcnvalucs 

x = . f ( k ) .  (56) 

It  is easy to check that the above constructed eigenvccton constitute the whole 
hash set. It is also clear that thc matrix M i  is indeed positivcly defined and has 
all eigevalues of the ordcr of , f ( k ) ,  i.e. of thc order of I/I\', except for onc non- 
degenerate eigenvalue that is of the ordcr of A'. 

Appendix B 

In this appendix we discuss thc mcthod of handling thc zero cigcnvaluc of thc matrix 
M' that appears for even A', cvcn 1; and d = IYZ. Thc existcnce or zero eigcnvaluc 
that corresponds to thc eigcnvcctor ry, cx ( - l ) p ( y ,  means that thc integrand of the 
integral (ll), after pcrforming intcgration ovcr thc .lij does not cfcctivcly depcnd on 
the coordinate that  mcasures the projccrion of  .x,, onto :c:. Thc intcgraticln ovcr this 
particular coordinate introduccs ncw Dirac's 6. That in turn means that the integral 
over X contains an additional constrain, 
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The minimum that is calculated in (24) must be modificd in two ways 

(i) The range of X must be limited to A,, > ti and x,(-l)”cfX,, = 0. 
(ii) The matrix M must be substituted by the matrix M’ which is identical to M when 

The proper formula reads then 

4215 

acting on any vector perpendicular to xi = (-1)”gf. 

The expression (37) should in principle contain sums that do not include the term 
k = a N / 2  and the division by the factor f ( n N / ? )  = 0. Fortunately the terms in 
question are proportional to the factors I<i(k)12 which vanish as well for k = a N / 2 .  
The ratio of the two factors has a well defined limit as w k  - 00. The dangerous 
term, when calculated in this limiting sense, is therefore of the order of l /N ,  and 
can be left intact in the  limit iV - 00. In effcct the expressions (37) and (3s) may 
be regarded as generally valid, provided we treat the singular term in the above 
described manner. 

Appendix C 

In this appendix we construct exact minimum of the form 

min (A(M’ ) - ’A) .  (59) 

Elcmentary calculations show that for d < CL the exact minimum is obtained A = Ai,.. 
Here we consider a < d < 2n  (i.e. for T = 1). For larger values of d the calculations 
are technically more complicated but otherwise can be done along the same lines. 

Let us first turn back to the vector A:r = ( K ,  . . . , K ) .  This vector would minimize 
the  form (59) if for any vector AA, such that  AA, > 0 the following were true 

(A:r + AA)M-l(A:r + AA) > A:rM--~lA~,. 

z; = (M-’Air ) , ,  > 0 

(60) 

This condition is fulfiled, providcd 

(61) 

for all 11. From the (34) we obtain 

so that 
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In the limit of A‘ - cc. the sums may be replaced by intcgrals. For instance 

The integral over w can be easily evaluated using the complex variahle 2 = efiw 
and the Cauchy theorem. The function f ( w )  bccomes then thc polynom of the ? ~ t h  
order in :. The zeros of this polynom become simple polcs of the integrand. 

For P = 1 the calculations arc particularly simple. Of the two polcs, only one lies 
inside the integration contour (i.c. the unit circle) 

where y = d / 2 ( d  - a). We then obtain 

An analogous method leads to 

6,(1 - s) + 1 - 6; 
A =  

? ( d  - a)(? - s) ( r l -  n)(y - s) 

and 

Direct inspection into the expression (66) indicates that in the case 6; = 1, x,, < 0 for 
p = p ( i ) + 3 , + . 5  .... and ~ ~ = p ( i ) - ? % - 4 ~ . . .  . For 6; = 0 the components 
of z,, are negative for ,I = / I ,(  j )  f 2 .  + l , .  . . . This provcs that A:,. is not a 
minimum of (59) for 12 < d $ ?a. 

It is obvious, however, that the true minimum can he found by allowing more 
and more components of the vector X to be strictly grcatcr than x, For 6; = 0 the 
natural choice is the probe vector 

2 -  (69) X p , - ( t i  . . . . ,  A u , j , - ? , t i  ...., X I , ( ; ) + ? , &  .... 1. 

Using the standard methods of the diffcrcntial calculus we find that 

P‘ ~ - 1 ~ 2  ,pr - X U  - 111. M-IXO ,pr - M - I X O  iw ( T M - I - ~ ) - I M - I x ; ~  (70) 

wherc P dcniites thc projection onto the 2-dimensional suhspace spanncd by the 
coordinates , I (  i )  f ?.The inversion of the projected matrix 7’M-I” refers to the 
subspace of projection only. In the next step we construct the next approximation for 
the extremum by considering 

A =  (. . . . . .  X;$-<>x.X,,,;,-?.x > . , r , - .  ,.... 1 (71) 
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and so on. Amazingly, it turns out that the result obtaincd for the prohc VcCtOr (69) 
d o  not differ from those obtained for (71). This  suggests strongly that (69) describes 
exact form of the minimum. An analogous situation occurs for 6, = 1. 
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