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Abstract. We investigate optimal conditions for the storage of invariant sets of patterns
in neural network memories. The sets of patterns that we consider are highly correlated,
non-random and invariant with respect to some symmetry transformations. We generalize
Gardner's method to study the fractional volume in the space of neural interactions that
allow for storage of invariant palterns, We demonstrale that optimal storage conditions
correspond to non-trivial relations between the number of stored patterns, their stability,
and other, symmetry-specific characteristics of patterns.

1. Introduction

Recent progress in the theory of attractor neural networks [1,2] has became possible
due to an extensive use of statistical physics methods (see [3] for an extensive pre-
sentation of the theory over the last five years). In the recent years a lot of effort has
been devoted to applications of such methods to the theory of learning (for a review
see {4]), i.e. the determination of interactions for which network dynamics leads to
desired attractors. Such works have been initiated by Gardner [5] who derived the
optimal conditions for which storage of a set of random patterns is possible. We apply
Gardner's program in the present paper to the problem learning scts of patterns that
are invariant with respect to a group of symmetry transformations.

The standard models of attractor ncural networks consist of a set of N binary
neurcns, We denote the neurons states by o; = 1. Neural dynamics in the absence
of noise takes the form of the deterministic updating rule,

ot + At) = sign (ZJ,-jcrj(i)) (1)

J#i
where J;; denotes the synaptic connection matrix. A set of p specificd patterns, gj‘,
where p=1,...,p,and 7 = 1,..., N is said to be stored in the memory described
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provided the connection matrix is, for cach 7, normalized according to

ZJ% =N (3)

i

The states £ are stable even for « = 0. Larger values of the stability paramcter <
ensure larger stability domains of the pattems.

The probability that solution of the inequalities (2) exists is, according to Gardner
[5], given by the fractional volume in the interaction space of the matrices J;;,

- IL{S I_Ij;ta' d.J;; H,u o Z;‘;ﬁ('}i;/\/ﬁ)ﬁf - ’C]‘S(Zj;ei Jigj —- N)} )
H:[f Hj;ei dJ,.jé(Z#‘. J:‘zj - N)] .

Gardner’s approach allows to determine in the statistical sense whether or not
the solutions of the inequalities (2) exist. The existence of such solutions may then
serve as a necessary condition for convergence of various learning algorithms [5-8]

The original idea of Gardner has been developed in various directions recently
(for a review see [9]). The existence of optimal solutions of incqualitics (2), that is,
those that contain the smallest possible amount of errors, can be formulated as a
problem of canonical ensemble calculation [10]. Different restrictions of the matrices
J;; have been considered. Gardner’s program has in particular becn applicd to
matrices with J;; = 41 [10-12], and to matrices characterized by a definite ratio of
symmetric and asymmetric parts [13]. All these generalization of Gardner’s approach
may also be studied in the context of the problem considered in the present paper.

One of the basic questions in the theory of learning concerns learning of structured
sets of data. Correlated biased patterns have already been investigated by Gardner
[5] and have been shown to allow better information capacity of the network. Specific
learning rules have been derived for hierarchically organized data {14,15]. Learning
algorithms for strongly correlated scts of patterns have been proposed by scveral
authors [4]. Some of these algorithms assure optimal stability (maximal values of the
x paramcter at the given capacity, cf works by Krauth and Mezard [6], Schmitz ¢ af
[8]). The problem of learning of structured patterns within a given context has been
addressed recently [16,17].

Among the problems of storing and retrieval of structured sets of data onc of
the most important is that of perceptual invariance, i.e. the ability of cognitive systems
to recognize transformed versions of remembered patterns. Among possible trans-
formations there are translations, rotations, scale transformations, etc. The problem
of perceptual invariance is central for cognitive psychology and has been widely dis-
cussed for multi-layered feed-forward nctworks (see for instance [18]). In the context
of attractor neural networks this problem has becn addressed by von der Malsburg
and Bienenstock [19,20], and Kree and Zippelius [21]. These authors considered net-
works that recognize topological features of images. All homeomotphically invariant
images are recognized in such nectworks as prototype graphs.

Our aim in the present paper is to study optimal siorage of invariant sets of daia
in attractor neural networks in the other sense. We shall dcmand that elements of
a given sct of patierns invariant with respect to some group of transformations are fixed
points of the network dynantics (1). All invariant images are recognized as such in our
models, Such a property may turn out to be uscful in scveral problems of pattern
recognition.

Vr
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The plan of the paper is the following. In section 2 we formulate the problem
and define invariant sets of patterns. We consider sets of highly correlated, non-
random states. Section 3 contains a detailed description of an alternative approach
to the evaluation of fractional volume (4) for the invariant sets of patterns. Analytic
evaluation of the storage capacity for such sets is discussed in section 4. We derive
variationally exact boundaries of the region in the control parameter space in which
solutions of equation (2) exist. The results are presented and discussed in section 3.
We demonstrate that optimal storage conditions correspond to non-trivial relations
between the number of stored patterns, their stability, and other, symmetry-specific
characteristics of patterns. Three appendices at the end of the paper contain technical
details of the calculations,

Z, invariant sets of paiterns

In most of the neural networks models one considers random pattemns, i.c. patterns
that at least to some extend are constructed according to stochastic rules [3]. This
fact implies the necessity of use of sophisticated methods of the theory of disordered
systems, such as replica trick. In this paper we consider non-random patterns, however,
since we want to extract possible effccts of group invariance. For this reason the use
of replica trick is not needed.

One possible implementation of our idea is to rcpresent the pattens in d-
dimensional lattices and to consider patterns invariant with respect to translations.
The simplest example of such sets of patterns corresponds to d = 1.

We consider a set of V neurons located for simplicity on a one-dimensional torus

rather than a nna.dimanainnal line  Thrae tnnnloune allow sacier trearment of houndary
ACRLELWAE LALEGRE] &3 LAWY ABINLEN/SRBOCPALSRIAET JRIAN AW MWD L\Illulllbj VY Uil LI WA LWL WL UL J

effects but is by no means necessary for our approach. As one of the patterns £#,
the one with u = 1, we take

& =+1 &)

for 1 i< d,and £} = ~1 otherwise. Such a state represents a one-<dimensional
‘pixel’ of d active (¢ = 1), neurons surrounded by a ‘sea’ of inactive ncurons (¢ =
—1). We consider now all the translated versions of the pattern £!, where the
smallest possible translation is by « neurons. Evidently 1 < a € N. The pattern £2,
for instance, is given by

& =+1 (6)

for 14+ a < i< d+a,and £ = —1 othcrwise, ctc.

For the torus topology translations are the same as rotations, so that we choose
a to divide N. The number of different patterns in the set of all ‘translated’ versions
of £! is therefore p = aoN = N/a, and is a natural number{. We denote this sct
of patterns by . We ask in the present paper whether it is possible to store this set
of patterns in the neural nctwork memory of the Hoplicld-type. We aiso investigate
optimal storage conditions like, for instance, the conditions for maximal stability of
stored patterns at the given capacity of the network etc.,

t The discrete symmetry group in question is isomorphic to Zp, ie. group of natural numbers with
addition modulo p.
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Obviously the presented construction of non-random patterns may easily be gen-
eralized to multiple dimensions and to multidimensional symmetry groups, such as
two-dimensional translations on a plane. Torus topology, as we mentioned does not
have to be used, when the effects of plane boundaries are taken into account. Invari-
ance with respect to a whole group of isometries (transiations, rotations, reflections)
may be considered.

Another important generalization is to consider the basic states of arbitrary form,
instead of ‘pixcl’ shape described by equation (5). One can also include an element
of randomness, and consider patterns that have ‘fuzzy’ shape.

For any case the sets of data that we consider are highly correlated. When storing
them onc usually encounters the appearance of stable spurious memories. Instcad of
having elementary ‘pixel’ states as the only stationary states, one encounters two-'pixel’
states, three-‘pixel’ states, and so forth. We do not study this problem in the present
paper for two reasons. First of all, the spurious states that we described may in fact
be useful for some applications and their existence may even be desired. Sccondly,
the question that we ask is how to store optimally the set of patterns § in the
memory, independently of the appcarance of spurious states. The questions of typical
performance of the memory in optimal conditions in general and of the stability of
spurious states in particular belong, on the other hand, to a different category. They
may be answered by studying applications of particular learning algorithms (such as
various versions of the minimal overlap algorithm [6,8]) in order to store the set S.
We leave the discussion of those problems to a separate paper. Here we concentrate
on the interplay between the group invariance and optimal storage propertics in the
frame of Gardner's program.

3. Fractional volume in the space of interactions

The calculation of the fractional volume in the space of interactions (4) for the set
of non-random patterns invariant with rcspect to one-dimensional translations and
defined as is section 2, equations (5), (6), docs not require the use of the replica
trick. It does require, however, some modifications to the original approach of
Gardner that we descibe below.

The fractional volume V7, may be written as

N
Ve = [V (7

i=1

where each of the partial fractional volumes V; is defined as

- fl'l,-# dJ;; H,L @[f? Zj;tf(-]fj/\/ﬁ)ff - K‘]‘S(Zj;ﬁ ij - N).

v, 8)
3
N;
ML . e 1 0 e o e e et P L . Li.n e manoish—a 2o e b
1HIC NUININANZALION CONsSLAIll 11 LY dDOVE CAPTESIUTE I BIVCTL UY
bt}
N,;:] d.],-jé( .JijaN). (9)

After representing the Dirac & function in the form of a Fourier integral, the inte-
gral over J;; becomes Gaussian and can be performed analytically. The remaining
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integration over the Fourier variable can be evaluated in the N — oo limit using the
saddle point technique,

1 1 1
N; = 3 j(; dsexp [N (s - E]ns + Elmr)]

:Cexp[%N(l—ln%)]. (10)

C denotes in the above expression integration contour for s going from —ico 10
+ico. € is a constant that for large N behaves as InC/N — 0. The asymptotic
behaviour of the integral (10) is governcd by the value of the integrand at the saddle
point s = 1.

Similar techniques can be used to evaluate the numerator of the expression (8),
which we denote as ¢ ;. We represent the Dirac & and © functions as Fourier integrals

[5] and use the following representation

P, = 2m ds/HdJ exp[—s(z.] )]

Je i#

xj’; Hd)\”/H(dmu/E:vr)
xexp[z (5“# K;ff"*u)]' (11)

+

Gaussian integrations over J,;, and then over @, ¢an be performed explicitly. We
obtain then the following expression

_ 1 1 (Vam)eN l-o 1
q)"_Q_rri(‘.zw)C"N (det Mi)l/Q/ dsexp|[N|s - > Ins+ 31117:'

f HdA exp(—s 3 A (ML) (12)

frypt

< =

where (M* mi, are the matrix elements of the inverse matrix of the overlap matrix

M?. The elements of the overlap matrix are, in turn, given by

i 1 Lt mpt! oyt
M, =5 D elefere). (13)
i

Note the overlap matrix M is i-dependent. It has the dimension p = oV, and, as
we shall discuss later, is positively defined for the considered invariant sets of data
(see appendix A)t. For this reason we may consider the contour C' to lie to the right
of the imaginary axis (Re s > 0). In particular we may consider positive real values
of s as candidates for saddle points.

t it is worth stressing that even for random. statistically independent patterns the matrix M can be shown
to be non-negative [22).
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Let us introduce the function
f(.s,a,rc):f ‘DAexp( ZA (ML ) (14)

where we used the shortened notation for the multiple integral over A . We also
define

1
gls,a,k)=s—

-« 1
> ln.s+?v-ln fls, e, k). (15)
Using the above introduced notation we may write down

$. = "'—1'—'— = ( 41‘.)0}\, / ds eNy(s,o(,K)
P2 (2m)oN (detMi)l/2 )

(16)

The integral over s may now be evaluated using the saddle point method. We show
below that for some values of the parametets «, « the saddle point corresponds to
real s,

In the limit of s — 0 we introduce new integration variables y, = /s, so that

fls,o,8) = (\/_)QN'[ ’Dyexp( EJ“(M )M.yu) (17)

From (17) we easily obtain the asymptotic behaviour of f for s — 0,

In f(s,ex,8) = ——C%V—ln s + constant, (18)

A

The above result implies that for s — 0
g(s,a,8) — co. (19)
Direct inspection of the definition of f supgests on the other hand that for s — o
fls,a, k) — e~ Nalex)s 20y

where A(e, &) is an intensive function of the control parameters o, x and others if
there are any. This function is given by

Ala, K) = WH (Z,\ (ML A, ) (21)

From the expression (20) we obtain asymptotic behaviour of the function g for s — oo,
gls,a,8) = s(1— Ala,k)) - Bla,r)ins+ - (22)

where B(.,.) is another intensive function of control parameters. Evidently, g tends
10 oo provided A{a, k) < 1. In such a case the function g(s, o, &) has a minimum
for some s in the interval (0,00). This value of s is a saddle point value for the
contour integral (16). Obviously, the value of s at the saddle point tends to infinity
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as A(o,x) approaches 1. At the same time the value of g tends logarithmically to
—co. Fractional volume shrinks to zero when

Ala, k) =1 (23)
or, in another form,
min (S A (M)A, ) = N (24)
A, 2k Ln; TAN un u} i
[T

From (24) one obtains the analogues of Gardner’s critical curve o, () that determines
the boundary of the phase in the control parameters’ space in which solutions of
inequalities (2) exist.

There are specific aspects of our method of calculation of the volume in the
interaction space that require more discussion. First of all, note that until now we
have not attempted to discuss the possible randomness of the patterns £, In another
words, we have not calculated the average over such randomness. There arc basically
two ways of treating random patterns within our method.

The first way consists in calculating the average over £* in (15). This requires
averaging of the logarithm of f(s, o, «), and may be performed using the standard
replica method. As a result one easily recovers the original Gardner result. Our
method works well in such a case, but is nothing more but a modification of the
standard approach, as is for instance the cavity approach of Mezard [23].

The second way of avcraging the logarithm of the fractional volume consist in
the direct use of expression (24). This is, however, a very difficult task, since for
typical random realizations of the matrix M* the configuration A, that minimizes the
quadratic form on the LHS of (24) itself depends on £ and is very hard to find.
Nevertheless, one may try to find it for each realization of the quenched variables
using variational methods. For a given « and a given realization of £#, one may then
find a value of x that fulfils (24), but is still £# dependent. Finally, repeating such a
procedure for different realizations of £#, one may calculate the average and rccover
the Gardner result. In this casc our mecthod is much more complicated than the
replica or the cavity method, bui gives some new insight into the probicm discussed.
It relates, namely, the problem of calculation of the fractional volumec to properties
of the random matrix M*. This relation, in turn, allows us to apply random matrix
theory [24] to evaluate the critical curve.

In particular, by looking at the averaged density of the eigenvalues of the matrix
M’, one can show that typical realizations of M? have spectra that are bounded from
above and from below. This fact us allows immediately to derive upper and lower
bounds on Gardner’s critical curve [22]. Such bounds are quite precise for not too
small values of x. Morcover, such bounds may be quite easily derived for various
distributions of £# and various network architectures. In [22] we have derived such
bounds for biased patterns, as well as for randomly distorted versions of the ‘pixel’
patterns that are discussed in the present paper. Such applications of our method

allow to determine critical curves only approximately (within the obtained bound).

The advantage of our approach, however, is that we are able to calculate precise
estimates of critical curves for a much more general class of random patterns that is
accessible to the replica or the cavity method.

Finally, our method may be dircctly used for non-random patterns, since in such
a case no averaging over the quenched disorder is needed. In the present paper,
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in fact, we apply this method to non-random ‘pixel’ patterns (see the next section).
Similarly, we may apply the method to any other highly ‘structured’ and organized
set of data. The investigations of optimal storage conditions and critical curves in
such cases allow us to isolate and study the interplay hetween the structure of the set
of patterns and propertics of the memory. Such problems cannot be casily resolved
with the help of the standard methods.

4, Calculation of critical storage conditions
In order to derive explicit form of the critical condition (24} we have to specify the
overlap matrix M. We consider here the particular example of the set of invariant

patterns — the set of ‘pixel’ patterns introduced in section 2. For this case the matrix
M defined as

M=o Sl

J#L
. Bek w'pp! __L 25
Ze grere - (25)
has the following form
. 4d 4(d ~ a)
M, = N 6, o HEEY (—(N—(‘Sn.wﬂ + 6 1)
4(d — 2a) 4(d — ra)
+ T(alt‘u‘+2+éu-.1t‘*3)+' -t -—N_(éﬂvﬂ'+f‘+ 6#.#'—1")
dy _ , .+ 1
+ (1——1\7)55 & -~ (26)

The matrix M has the form gencric for sets of data invariant with respect to some
group of geometrical transformations. First two rows of (26) describe a ‘short range’
part that is non-zero for neighbouring ¢ and y' only. Note that for the case of sets
of patterns that have a compact shape and are invariant with respect to translations
or rotations, the concept of neighbouring y and ' can always be defined precisely.
The short-range part of M consists in the presently considered case of » terms, where
r = [d/a],, while the function [.], is defined as follows: for any real, non-integer
z, [z], is the integer part of x. For integer z, {z], = # — 1. If we take any of the
‘pixel’ patterns and start to translate it in one dircction (say to the left), exactly »
of the translated ‘pixel’ configurations will partially cover the starting configuration.
Each of the neurons is active (£ = 1) for » or » 4+ 1 patterns.

The remaining part of the matrix M is a ‘long-range’ part. This part (last row
of (26)) has the form of the sum of several (in the present case two) projection
operators and does not have any trace of the metric structure. The generic form of
the matrix M allows us to find its eigenvectors, cigenvalues and its inverse analytically
for a broad class of invariant sets of data using Fourier transform techniques.

In order to get an insight into the critical condition (24) we have to achieve the
two tasks.
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(i) We have to evaluate the action of the inverse of the matrix M on the vector
A=(A, . AN
(ii) We have to find the minimum of the function AM~1X,

The first task is done by solving the linear equation
Ap = Z My (27)
w

with respect to z,. This is done easily after introduction of two unitary transforma-
tions.

o multiplication by £/
A, =&, (28)
z, =¢t'z, (29)

o discrete Fourier transform

alN-1
1 .
Mk) = === > A eMen 30
W=Taw 25 M G0
alN-1
w(k) = ;N X el (31)

I}
=]

H
with the Fourier frequencies given by
27
——
aN
fork=0,....aN - 1.

Elementary calculation then yields

W =

ME) = f(R)2(k) = 60 Y€ (K)a (k) (2)
kf
where
fk) = % + (1 - %)amm +3 %—’i} cos (Fwy)  (33)

ri=1

while £;(k) is the Fourier transform of £/. The matrix M after performing the

transformations (28) — (31) becomes a sum of a diagonal matrix and a projection

operator. The solution of (32) can be casily found and reads

= MK 1 E(R) INRHCILCIIFICS
HONRNIORES DY HACHIACIHIF TS

In the above formula f(k) must be differcnt from 0. As we discuss in appendix
A, f(k) is typically greater than zero, except for even N, w; = m, even r and for

z(k) (34)
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d = ra. Fortunately, for this particular case |£;(k)|* vanishes as well. The detailed
discussion of this apparent singularity is contained in appendix B.

Using the solution (34) we may now turn to the second task — cvaluation of the
minimum over A, > « of the function

AMTIX = 3 At (k)a(k).
k

We shall construct this minimum using the variational approach. It is obvious that
the minimum is obtained on the boundary of the set S, of A, > x. A natural
candidate for the minimum is therefore the ‘edge’ point AJ, = (x,...,x). Note
that Agr(k) = k€, (k). Inserting the probe vector Agr into (24) we obtain after some
algebra the approximate formula for the critical storage condition. Firstly, denoting

1 L ()E(K)
Z Sil ISV

1O AL (KDE(K)

- 35
kN k'sz F(RY) (33)
we immediately obtain from (24) the expression
1 A?
oAt T (36)
$o that finally
ON 1 sin? wilr+46;)/2
i 42 aN 2](&) .sing wy /2 (37)

K27 14 ZQN : aN?-l,f(k) = s;::;(;j/ééw

In the above formula we have introduced the parameter &; which is equal 0 or 1
depending on whether the ith neuron belongs to, ie. is active (£ = 1) in exactly
r or v 4 1 ‘pixel patterns, respectively. We have also neglected in (37) the term
corresponding to k = 0 that enters the definition of A. For & = 0, |£#(0)* as
well as £(0) are both intensive, so that the ratio [££(0)|2/N f(0) that enters (35) is
negligible for N — co. Direct inspection of (33) indicates, on the other hand, that
N f(k) is an intensive quantity for k > 0 and has a well defined limit for N — oo.
That fact indicates also that the serics on the RHS of (37) has also a well dcfined
limit and becomes the integral

L 27 g - 4sin? w(r+s, )/

1 27 Jo flw) sin? w/32
E 2 ] 1 ir lo - 4sin? wir+6,1/2 (38)
~arJp O ) sin? w /2
where
r
s ’
flw)y=4d+ > 8(d~r'a)cos (+'w) (39)
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Unfortunately, it turns out that the ‘ecdge’ point does not always correspond to the
minimum of the expression (24). The incquality (38), nevertheless, describes the exact
critical curve quite well.

In order to see that A2, does not correspond to thc minimum of the quadratic
form AM~!A over A € S, we casily observe that the necessary and sufficient condi-
tion for this is:

(M7A), ==z, >0 (40)

W

n

for all x. Direct calculation of x,, (see appendix C) shows that it is true only for d < a
(i.e. for = = 0) and it is not the case in general. With increasing d some components
of the vector x , become more negative. The negative components, however, decrease
exponentially when p varies, and one can cxpect that their ‘effective’ number remains,
in a sense, finite. For instance, for the case » = 1 and §; = 0, the negative
components appear for u = u(i) £ 2, 4, etc, where p(7) denotes the single value
of p for which £ = —1. A better approximation for the minimum of the cxpression
(24) is obtained for

A= (Koo Aypiymo Koo e o ApgiygaaBres2) (41)
then for
4 7, -
)\pr = (K,... ‘Au(i]—fl’ﬁ"“A,u(i)—Z’h"‘ .. "Au(i)+2""€*’\u(i]+4”€’ ool (42)

etc. The values of A ,),, in the case (41), and Ay, 4, in the case (42) have
to be determined using standard differential calculus (for the detailed discussion see
appendix C). In this way for every valuec of « we are able to construct a systematic
approximation to the minimum of the quadratic form (24) using elementary methods.

The detailed numerical analysis of the above result is presented in the next section.

5. Discussion of the results

We start this section with the detailed discussion of the approximate rcsult (37) and
(38) that corresponds to the simplest variational probe function that describes the
minimum of the form (24).

The critical storage conditions (37), (38) dcfine the boundary of the region of
parameters o = 1/a, d and « for which there exists at least one solution J;, in
the space of interactions that fulfit the condition (2) for a given z. Since in general
there is always an extensive number of neurons that are covered by + 4 1 ‘pixels’ and
correspond to §; = 1, as well as thosc that are covered by r ‘pixcls’ and correspond
to §; = 0, the inequalities (37) and (38) must be fulfilled for every 7, i.e. for both
values 6, =0, 1.

We remember once morc that « and a are natural numbers, and that ¢ must
divide V. d is the width of the ‘pixcl’ (the number of s such that £ = 1) and must
be smaller than N, Since the theory is invariant with respect to the simultancous flip
of all ncurons, the results must be invariant with respect to the exchange d — N — d.
We shall consider in the following only the case of d < N which is interesting from
the point of view of pattern recognition theory and for which the limit N — oc was
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Figure 1. The maximal stability parameter & as a function of ‘pixel’ size ¢ for the
network capacilty o = 0.5; N = 5000,
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Figure 2. Same as figure 1, but for o = 0.2

considered. We present results of (37) for N = 5000 which corresponds already to
the asymptotic limit of (38). For larger valucs of N results arc the samc.
In figures 1, 2 and 3 we prescnt the curves that correspond to the maximal stability
paramctcr «x as a function of d for a givcn value of «. For largc valucs of e (sec for
i

............. Foman R . 1 1

lllanll\.C ubuw 1 1IUlI & = a. OJ', LIUSU (3] L!IU uppcl kd[)dblly llIllIl fl’ 1y amin =1,
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Figure 3. Same as figure 2, but for « = 0.02

the maximal values of « behave more or less regularly. « ... grows from practically
zero, and saturates at some value for larger d. Note, however, that the approach
to the asymptotic limit is oscillatory. The oscillations are relatively weak and have
period 2. One may expect that even weak randomness will tend to smooth out these
effect [22]. The oscillatory structure is visible much better for smaller o = 0.2 in
figure 2; oscillations are here relatively larger and have the period a = 5. After
somewhat irregular behaviour for small 4 the curve aproaches regular oscillatory
phase that does not seem to be damped. Still onc may argue that even weak disorder
(such as for instance fluctuations of d) will destroy the observed structure.

This structure is fully developed for small values of o = 0.02, as presented in
figure 3. Again, after initial growth, ., depends periodically on d. Oscillations are
large (50% of amplitude)} and have the period equal to a = 1/a = 50. They scem
to be stable with respect to pattern randomness [22]. The two parts of the ‘gothic
arcs’ come from the two different conditions (37) for §; = 0 (left ‘arc’) and 6, = 1
(right ‘arc’), respectively. The maxima at the values of d which are multiples of a arc
the result of the fact that at this point there are no neurons with §; = 0. This points
are derived from the condition (37) for §; = 1 which has a jump when going from
d=kawd=ka+1,

Neglecting the maxima in d = ku, the interpretation of the curve in figure 3
is the following. There are optimal values of the size parameter d that aflow for
higher stability of the stored patterns at thc same level of capacity «. High stability
is obtained when the distance d, between the two ‘pixels’ that are separate, ie. do
not have any common active neurons, is maximal. This condition is obtained for
d, >~ af2, ie. for d = ka + a/2. On the other hand, maximal stability is much lower
for when d is small, ie. for d = ka. One should stress that the above statement,
which is the central result of our paper, is very general and turns out to be valid
for higher dimensions for different symmetry groups, as well as in the presence of
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disorder [22].
The periodicity of the optimal stability curves in figures 2 and 3 is an interesting
effect itself. It means that when we construct basic ‘pixcl’ states using various numbers

of the blocks of the size a plus one block of the size d*, so that d = ma + d-, the
resulting optimal stability is m indcpendent.

16,00 -uwlurn\uu“nstnu|u|w|unnu|\|s||w|u:|n|uu||
12.00 -
TR | d=100 -
i~ : k
.00 2
4.00 - \ .
. \\‘_\:

0.00 e e e
0.00 0.10 0.20 0.30 0.40 0.50

a

Figure 4. The maximal stability parameter x as a function of network capacity o for
d =100; N = 5000.

The different look at our results is presented in figures 4 and 5 that present « .
as a function of « at the given value of d. These figures arc direct analogues of
Gardner’s curve o () [5]. Here, however, the discreteness of our model plays an
essential role. The values of « correspond to divisors of N = 5000. For ¢ = 100
which is a multiple of a = 1/ for most of the larger values of a presented in
figure 4, the curve has a regular shape — it decreases with increasing o. For d £ a
the curve enters another regime, fully described by the expression (37) with r = 0.
The situation is much more complicated for d = 99. Although the behaviour for
a = 1/a < d is analogous, the curve exhibits irrcgular oscillations for smaller values
of . The points of the curve lic either close to minima or to maxima of the curves
represented in figures 1-3, depending on the value d modulo a.

The major question now is how rcliable arc the above results. We remind the
reader that they are exact only for d € a and otherwisc they are based on an
approximate variational method of finding the minimum of the quadratic form (24).
To answer this question we construct the exact minimum using the method sketched
at the end of the previous section and presented in detail in the appendix C. Figure
6 represents the esscntial features of the exact solution. We limit ourscives here to
d € 2a, and o = 0.02. The analysis described in the appendix C shows that the
point

A

A= (Ryouis (43)
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Figure 5. Same as figure 4, but for d = 99,
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Figure 6. The maximal stability parameter ~ as a function of *pixel’ size d for the nctwork
capacity a = 0.02; N = 5000. Only the region d £ 2« is shown. Squares correspond
to the results of figure 3 and describe exact results for d € e and approximate result
for a < d £ 2a. Stars denote the ‘exacl’ result.

does not give the exact minimum of (24) (the corresponding critical condition is
represented by squares in figure 6). A better approximation for the exact minimum
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is obtained for
AL = (Koo Aygiyaas Koo Apgipar Ko o) (44)

Note that this is an analogue of (41) for the case §, = 1. The indices p(7) and
(1) + 1 correspond to £,y = £,¢;41 = —1. Although the results for (44) (stars in
figure 6} differ quantitatively from those obtained for (43), their qualitative character
remains the same. As we expect the difference grows with d (see appendix C). We
have also tricd another probe vector

A:t‘ = (K‘., e ,/\#(i)_,%,n, Ay.(i)—?’“" . .’AI‘(’.)“""S’ ’C,)\u(i)_‘_s,l‘{,,. ..). (45)

In principle, more and motre components of A should become rigorously larger than
x and should be determined using differential calculus when d approaches 24. Amaz-
ingly, however, the results obtained for (45) do not differ at all from those obtained
for (44), Although we could not prove it, this suggests strongly that the results
obtained with (44) are exact.

In the next ‘gothic ar¢’ (2a < o £ 3a) the situation is analogous and most
probably a finite numbcr of components of A, > « sullices to estimate the minimum
very precisely.

We conclude from this analysis that:

(i) simple probe vectors, such as ,\gr or ,\gr, give for smaller values of d the exact
description of the critical curve; the same vectors give a very good approximate
description of the critical curve for all values of d.

(i) The main difference between the exact results and those obtained for A, =
(#®,...,k) consists in smoothing and damping of the ‘gothic arc’ oscillations in
figures 2 and 3.

Nevertheless, the oscillations observed for approximate solution (figures 2 and 3)
survive for the exact solution at least to some extent. Thercfore our main conclusion
concerning non-trivial optimal conditions for higher stability of patterns remains valid
in general.

In the conclusion we would likc to stress that we have presentcd here an example
of the application of Gardner’s program to the problem of storage of invariant data.
The theory presented may be casily gencralized to various other cases and the results
have generic character. They indicate that at the given capacity level of the memory
there are usually optimal stability conditions for storage of invariant scts of patterns.
Such conditions are typically related to the size of the stored pattcrns and to the
difference between close, but separate patterns.
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Appendix A

In this appendix we discuss in detail propertics of the matrix Mfm.. The diagonal
part of this matrix in the basis obtained aftcr applying two unitary transformations
(equations (29) and (31)) is related to the function f(k). For odd N all the valucs
of f(k), apart from k = 0, are doubly dcgenerated for wy, = 27 ~w;,. When N
is even, additional non-dcgenarate value of f(&) appears, sincc & may be equal 10

alN/f2,ie. w, = m Itis easy to check then that for (r+1)a 2 d 2 ra
4
flaN/2) = < (d~ra), (46)
for even r, and
4
f(aN/?):-}-\-;[(r-l— 1)a — d] 47

for odd r. Evidently for d = ra and cven r, f(eN/2) = 0. For the particular case
when d is a multiple of a, all ncurons correspond o §; = 1. Therefore, it is casy to
check that for each 7, {;(aN/2) = 0. The vector z(k) = 8, /s, I8 the cigenvector
of the matrix M with the non-degencrate eigenvalue zero. In the original basis it is
real and has the form z, = £} (—1)*. That mcans that the integral over r,, in (11)
cannot be performed. The discussion how to deal with this complication is contained
in appendix B. Here we stress only that apart from this singular case f(k) is strictly
positive for all k and all values of the parameters d and «a. It is clementary to prove
this fact for low values of », and we carefully checked it using numerical methods for
all other cases considered .
The eigenvales of the matrix M may be found easily from the equation

Az(k) = f(k)x(k) - i,—E,-(k) DG RDE(K) (48)
kl

The above cigenequation has following solutions.

o For all k such that £;(k) = 0, the cigenvalucs are
A= f(k)>0 (49)
while the eipenvector
x(k') = 60t (50)

Note that this eigenvalue is doubly degenerate. There are two real eigenvectors
that correspond to the vector (50), namely

Ef cos (wip)

T X
Tu vaiN
and

« Efsin (wyp)

# vaiN
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e For all &k such that £,(k) # O somc cigenvalucs can be determined from the
equation

1 (R
PN vy ol GH

The sum 3" is restricted to the sct 5* of k, i.e. k=0 and N* values of k # 0
such that £,(k) # 0. Therc arc ¢xactly N* non-degenerate solutions of the (51)
located between the different values of f(k). The largest solution lies above
f(0) = O(N) and is non-degenarate. It is important that all cigenvalues fulfil

A > min f(k) > 0. (52)
The corresponding cigenvectors are given by

(k)
A= (k)
and correspond to real x,, since f(k) = f(aN — k) and §;(k) = £ (aN — k).

o Finally, for each of the & such that £,(k) # 0 nad &k # 0 there exists one
eigenvector of the form

o(k’) = (k)8 i — Sl aN = K)oy o (34)

z(k') = (53)

§O that

Y&k =0. (55)
kl

There are exactly N* such cigenvectors and they correspond to the cigenvalues

A= f(k). (56)

It is easy to check that the above constructed eigenvectors constitute the whole
basis set. It is also clear that the matrix M’ is indeed positively defined and has
all eigevalues of the order of f{k}, i.c. of the order of 1/, except for one non-
degenerate eigenvalue that is of the order of N,

Appendix B

In this appendix we discuss the method of handling the zero cigenvalue of the matrix
M’ that appears for even N, even r, and d = ra. The existence of zero cigenvalue
that corresponds to the eigenvector @, o (—1)#§f, means that the integrand of the
integral (11), after performing integration over the J;; does not cffectively depend on
the coordinate that measures the projection of v, onto x5, The integration over this
particular coordinate introduces new Dirac’s &, That in turn mcans that the integral
over A contains an additional constrain,

Y (=1rEia, =0. (57)
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The minimum that is calculated in (24) must be modified in two ways.

(i) The range of A must be limited to A, 2 « and 3, (-1)#*&fA, = 0.
(ii} The matrix M must be substituted by the matrix M* which is identical to M when
acting on any vector perpendicular to :Lﬂ = (-1)#¢k.

The proper formula reads then
. iy-l =

The expression (37) shouid in principle contain sams that do not include the term
k = aN/2 and the division by the factor f(aN/2) = 0. Fortunately the terms in
question are proportional to the factors |£;(k)|? which vanish as well for k= aN/2.
The ratio of the two factors has a well defined limit as w, — «o. The dangerous
term, when calculated in this limiting scnse, is therefore of the order of 1/, and
can be left intact in the limit N — oc. In effect the expressions (37) and (38) may
be regarded as generally valid, provided we trcat the singular term in the above
described manner.

Appendix C
In this appendix we construct exact minimum of the form

min (A(M?)~IA). (59

A2k

Elementary calculations show that for d < « the exact minimum is obtained A = ,\gr.
Here we consider ¢ < d € 2a (i.e. for » = 1). For larger values of d the calculations
are technically more complicated but otherwise can be done along the same lines.

Let us first turn back to the vector '\gr = (K,...,~). This vector would minimize
the form (59) if for any vector A A, such that AA, > 0 the following were true

(Ape +AXNMTIAT 4+ AX) 2 AZMTIAD (60)
This condition is fulfiled, provihcd
z)= (M%), >0 61

for all ;. From the (34) we obtain

o wE(R)
“ = T )
so that
r, = ! ff‘Zexp(-—-iwk,u;r(k)). (63)

s VNa ! :
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In the limit of N — oc the sums may be replaced by integrals. For instance

kN Z]ﬁr exp(—iw(p—p)¢']  nNE (64)

(1= A)flw) (1—A)f(0)

The integral over w can be casily evaluated using the complex variable z = efi®
and the Cauchy theorem. The function f(w) becomes then the polynom of the 2rth
order in z. The zeros of this polynom become simple poles of the integrand.

For r = 1 the calculations are particularly simple. Of the two poles, only one lies
inside the intcgration contour (i.c. the unit circle)

=y Sy =1 (65)

where «+ = d/2(d — a). We then obtain

= Bras a)q(};!i&s)(l (=s)lrmrOl 4 ‘5*'("‘"')“'—”“)_1'} - (59)
An analogous method Jeads to
PPy (dé_,.(ﬂl)(_j_) 5 ©7)
and
-t Nerer R I
= e (P e
aNee

+ __S)lu—ﬂ(i)l +5i(_3)|ﬂ~uﬁ)—1l]_

(1= A)[8(d~a)(v - s)]* !

Direct inspection into the expression (66) indicates that in the case ¢; = 1, », < 0 for
p=p(y+3,+5,...and pp= p(2)=2,—-4, ... . For &, =0 the componcms
of x, are negative lor p = pu(i) £2.14,... . Thls provcs that A% is not a
minimam of (59) for o < d € 2a.

It is obvious, howcever, that the true minimum can be found by allowing more
and more components of the vector A to be strictly greatcr than x. For 6; = 0 the

natural choice is the probe vector

pr

Ao = (Kae s Ayaas Bae e e s Apgiygns Roe o (69)
Using the standard methods of the differential calcuius we find that

-1y42 0 —1 Q =140 -1 —Ipg~1130
ALMTIAZ = X0 MTIAT — M7 (PMTIP )T MTIAL (70)
where 7 denotes the projection onto the 2-dimensional subspace spanncd by the
coordinates p(i) + 2.The inversion of the projected matrix PM~'P refers to the
subspace of projection only. In the next step we construct the next approximation for
the extremum by considering

/\=(J'C,---.)\’.‘.{5\,_4,N«}t...:|,mﬂ----«)\,,(;).;gwh")\,;l\jg.g.w". ''''' ) (71)

M i =& Hitg
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and so on. Amazingly, it turns out that thc result obtained for the probe vector (69)
do not differ from those obtained for (71). This suggests strongly that (69) describes
exact form of the minimum, An analogous situation occurs for §; = 1,
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